

3. **CONTENIDOS**

- 1. Presentación y programación lineal.
- 2. Programación entera.
- 3. Formulación de problemas de optimización.
- 4. Incertidumbre. Optimización multicriterio y multiobjetivo. Análisis de sensibilidad.
- 5. Teoría de la decisión y árboles de decisión.
- 6. Simulación y el método de Monte Carlo.
- 7. Aplicaciones y límites de las herramientas prescriptivas.

La asignatura dentro del plan de estudios

Esta asignatura obligatoria se enmarca dentro de la materia 5. Data Science y Transformación Digital del plan de estudios. Se realiza durante el primer trimestre y provee al alumnado de recursos y conocimientos para el planteamiento, resolución y comprensión de las herramientas analíticas disponibles para la toma de decisiones a través de métodos cuantitativos.

4. PLAN DE APRENDIZAJE DE LA ASIGNATURA

Sesión	Contenidos	Actividades Formativas
1	Introducción y programación lineal	 Presentación. Introducción a través de caso sillas. Conceptos de programación lineal. Resolución mediante hoja de cálculo.
2	Programación entera	 Teoría de la programación entera. Formulación matemática. Caso. Introducción de un lenguaje de modelización con python.
3	Modelización matemática	Diversos modelos de optimización.Resolución mediante modelizador.Caso.
4	Incertidumbre, multicriterio, multiobjetivo y análisis de sensibilidad	 Incertidumbre a través de escenarios Análisis de soluciones. Introducción de múltiples criterios.
5	Árboles de decisión y teoría de la decisión	- Utilidad.- Decisiones.- Clasificación.
6	Simulación y métodos de Monte Carlo	- Método de Montecarlo - Simulación de eventos y generación de números aleatorios

		 Ejemplos. Realización de simulaciones mediante hoja de cálculo y software específico
7	Otras aplicaciones, límites y evaluación	- Teoría de colas- Programación de operaciones y proyectos(PERT, CPM)
		- Otras aplicaciones
		- Límites y sesgos de la cuantificación

METODOLOGÍA DOCENTE

La metodología combina la exposición del profesor, los materiales online (vídeos, artículos, presentaciones, tutoriales,...), el trabajo individual y en grupo y los casos prácticos con ordenador.

EVALUACIÓN

La evaluación se realizará a través de las siguientes actividades:

- 1. Examen teórico-práctico a realizar al acabar el curso, con un valor igual al 40% de la nota final.
- 2. Un ejercicio práctico para realizar durante el curso, con un valor igual al 50% de la nota final.
- 3. Evaluación continuada de participación en clase, con un valor igual al 10% de la nota final.

7. PROFESORADO

Jordi Pereira es doctor en Administración y Dirección de Empresas, ingeniero en Organización Industrial y en Electrónica Industrial por la Universitat Politècnica de Catalunya. Lleva a cabo actividades de investigación en el diseño de algoritmos para la optimización de problemas de planificación y programación de operaciones en producción y logística. Trabajó en la Universidad Politécnica de Catalunya entre 2003 y 2014, ejerciendo posteriormente en la Universidad Católica del Norte y la Universidad Adolfo Ibáñez en Chile. Desde el 2022 es Senior Lecturer en la UPF-BSM. A lo largo de estos años ha sido miembro de diversos comités de certificación de la calidad docente e investigadora, ha recibido varios premios de excelencia y ha dirigido y participado en diversos proyectos de investigación con financiación pública y privada.

8. BIBLIOGRAFIA

Eiselt, H.A., Sandblom, C. "Operations research: A model-based approach". Springer.

Hillier F., Lieberman, G. "Introducción a la investigación de operaciones". McGrawHill

Monahan, G. "Management Decision Making". Cambridge ed.

Winston, W.: "Excel Data Analysis and Business Modeling", Microsoft Press